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We introduce the enveloping algebra for a Leibniz pair, and show that the category
of modules over a Leibniz pair is isomorphic to the category of left modules over its
enveloping algebra. Consequently, we show that the cohomology theory for a Leibniz
pair introduced by Flato, Gerstenhaber, and Voronov can be interpreted by Ext-groups
of modules over the enveloping algebra.
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1. INTRODUCTION

Leibniz pairs were introduced by Flato, Gerstenhaber, and Voronov in the
study of deformation theory for Poisson algebras in [3]. A Leibniz pair (A, L)
consists of an associative algebra A and a Lie algebra L with an action of L on A.
Roughly speaking, a Leibniz pair can be viewed as an infinitesimal version of an
algebra with a group of operators acting on it.

An important example of a Leibniz pair comes from a smooth manifold,
especially from a Poisson or symplectic manifold, where the Lie algebra of smooth
vector fields acts on the algebra of smooth functions on it. Leibniz pair also arises
whenever a Lie group acts on an associative algebra. For instance, an action of a
Lie group G on a smooth manifold M naturally induces an action of the Lie algebra
of G on the algebra of smooth functions on M.

A cohomology theory for Leibniz pairs (LP-cohomology for short) was
introduced in [3], and they showed that the LP-cohomology controls the formal
deformation of Leibniz pairs. They also defined modules over a Leibniz pair.
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A natural question asked in [3] is whether the LP-cohomology can be explained by
Ext-groups of modules.

In this article, we construct for each Leibniz pair (A, L) an associative algebra
: U(A, L), called its enveloping algebra. We prove the following result as given in
Theorem 3.5.

Theorem 1. Let (A, L) be a Leibniz pair and U(A, L) be its enveloping algebra. Then
the category of modules over (A, L) is isomorphic to the category of U(A, L)-modules.

Consequently, the category of modules over a Leibniz pair has enough
projective and injective objects, which enables the usual construction of cohomology
theory for a Leibniz pair by using projective or injective resolutions.

Denote by Hj.(A, L; M, P) the n-th LP-cohomology group of the Leibniz
pair (A, L) with coefficients in an (A, L)-module (M, P, ¢). By Theorem 1, the
(A, L)-module (M, P, 6) corresponds to a module (P, M,5) over %U(A,L). We
consider the Ext-groups of the trivial module (k, 0, 0) over %(A, L) in a standard
way, and prove the following result, which shows that the LP-chomology is exactly
interpreted by certain Ext-groups. This gives an affirmative answer to the question
raised above. For more details we refer to Theorem 4.4.

Theorem 2. Keep the above notation. Then we have isomorphisms
Hj (A, L; M, P) = Extyy, (%, 0,0), (P, M, 7)),

for all n > 0.

The article is organized as follows. In Section 2, we briefly recall some basic
facts on Leibniz pairs and their modules. Section 3 deals with the construction of
the enveloping algebra for a Leibniz pair and a proof of Theorem 1 is given there.
In Section 4, we will calculate the Ext-groups of the trivial module over a Leibniz
pair and show the isomorphisms in Theorem 2. In Section 5, we will construct a
long exact sequence and apply it to calculate LP cohomology groups.

2. PRELIMINARIES

Throughout & will be a fixed field of characteristic 0, all algebras considered
are over k and an associative algebra A has a multiplicative identity 1,. We write
® = ®, for simplicity.

Definition 2.1 ([3]). A Leibniz pair (A, L) consists of an associative algebra A and
a Lie algebra L, connected by a Lie algebra homomorphism u: L — Der(A), the Lie
algebra of derivations of A into itself.

Usually, elements in A will be denoted by a, b, c,--- and those of L by
X,y,2,--. The Lie algebra homomorphism u: L — Der(A) just says that A is a Lie
module over L with the action {—, —}: L x A — A given by {x, a} = u(x)(a), which
satisfies the Leibniz rule

{x, ab} = a{x, b} + {x, a}b 2.1)

forall x e L and a, b € A.



Downloaded by [East China University of Science and Technology] at 00:49 19 December 2015

ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4489

Remark 2.2. Recall that a noncommutative Poisson algebra A is both an associative
algebra and a Lie algebra with the Lie bracket {—, —} satisfying the Leibniz rule

{ab, ¢} = a{b, c} + {a, c}b

for all a, b, c € A, see also [10]. Clearly, a noncommutative Poisson algebra A
corresponds to a Leibniz pair (A, A) together with the structure morphism p given
by setting u(a) = {a, —} for all a € A.

Definition 2.3 ([3]). Let (A, L) be a Leibniz pair. A module over (A, L) means a
triple (M, P, o), where P is a Lie module over L with the action [—, —],: L Xx P — P,
M is both an A-A-bimodule and a Lie module over L with Lie action {—, —},: L x
M — M, which satisfies

{x, am}, = {x, a}m + a{x, m},, (2.2)
{x, ma}, = m{x, a} + {x, m},a, (2.3)

forxeL,meM,ac A, and 0: A® P — M is a k-linear function satisfying

glab®a) = ac(b® o) + o(a ® a)b (2.4)
{x,o(@®@n)}. =o({x,a} @) + a(a ®[x, a].) (2.5)

fora,be A, € Pand x € L.

Remark 2.4. The above definition coincides with the original one in [3]. More
precisely, let P be a Lie module over L and M be an A-A-bimodule. Denote by
L x P (resp. A x M) the Lie (resp. associative) semidirect product of L and P (resp.
A and M).

Recall that a module over (A, L) introduced in [3] means a pair (M, P),
provided that P is a Lie module over L, M is an A-A-bimodule, and there is a Lie
algebra homomorphism Haty : L x P — Der(A x M), which satisfies the following
conditions:

(1) Haru((x, 0)(a,0)) = u(x)(a) for any x € L, a € A;

(2) Hatu((x, 0)(0, m)), Hatu((0, 2))((a,0)) e M for any xe€L,ac A,me M,a €
P;

(3) Haru((0, «)(0,m)) =0 for any « € P,m € M.

A triple (M, P, o) corresponds to a pair (M, P) together with a Lie algebra
homomorphism Haru : L x P — Der(A x M) given by

Hatu((x, @) (a, m)) = u(x)(a) + {x, m}, + o(a @ 2)
forallxeL,o e P,ac A,m e M.
A homomorphism (g, f): (M, P, c) — (M’', P', ¢') of (A, L)-modules means that

g M — M’ is a homomorphism of both A-A-bimodules and Lie modules, f: P — P’
is a homomorphism of Lie modules, and the diagram
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AP —2— M
idA®er lg (2.6)

’
o

AP —— M’
commutes. We denote the category of (A, L)-modules by /((A, L).

Remark 2.5. Let (4, -, {—, —}) be a noncommutative Poisson algebra. Recall from
[10] a quasi-Poisson module M over A is both an A-A-bimodule and a Lie module
over A with the action given by {—, —},: A x M — M, which satisfies

{a, bm}, = bla, m}, + {a, b}m,
{a, mb}, = {a, m},b + m{a, b}

for all a, b € A and m € M. In addition, if
{ab, m}, = a{b, m}, + {a, m},b

holds for all a, b € A and m € M, then we say that M is a Poisson module over A.

Let (A, A) be the corresponding Leibniz pair. Assume that M is both an A-A-
bimodule and a Lie module over A with the action given by {—, —},: A x M — M.
Then

(1) M is a quasi-Poisson module over A if and only if (M, M, ¢) is a module over
the Leibniz pair (A, A), where ¢ is given by taken the commutator in the sense
of associative action on M, i.e. 6(a ® m) = am — ma for alla € A, m € M.

(i) M is a Poisson module over A if and only if (M, M, o) is a module over the
Leibniz pair (A, A), where ¢ is given by the Lie action of A on M, i.e., d(a ®
m) = {a,m}, forallae A,m e M.

Therefore, the quasi-Poisson module category and Poisson module category
over A can be viewed as subcategories (but not full subcategories) of the module
category over the corresponding Leibniz pair (A, A).

Denote by A°P the opposite algebra of the associative algebra A. Usually, we
use a to denote an element in A and ' its counterpart in A°? to show the difference.
Denote the enveloping algebra of A by A° = A ® A°? and the universal enveloping
algebra of L by %(L). In this article, elements in % (L) is written as X, Y, Z, --- and
the identity element in %(L) is written as 1. Note that % (L) is a cocommutative
Hopf algebra, with the comultiplication denoted by A(X) =}~ X(;) ® X, for any
X € U(L), where > is the Sweedler’s notation, see [9, Section 4.0] for more details.

Suppose that P is a Lie module over L. Equivalently, P is a %(L)-module.
We denote the action U(L) x P — P as (X, «) — X(«) for any X € %(L) and o € P.
Note that % (L) is a cocommutative Hopf algebra and A¢ is also a %(L)-module
with the action given by

X(a®b)=7) X, (a)® (X, (b))
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for X € U(L),a® b € A¢. Moreover, A is a U(L)-module algebra, which means
that the multiplication A° ® A° — A is a %U(L)-homomorphism. The smash product
A°gU(L) is an associative algebra, see [9, Section 7.2]. Recall that A°U(L) = A° ®
U(L) as a k-vector space. The multiplication is given by

(a®@b'iX)(c®d'tY) =) aX;)(c) ® (X (d)b) 1 X3 Y.
The following lemma is straightforward, and we omit the proof here.
Lemma 2.6. Let M be simultaneously an A-A-bimodule and a Lie module over L with

the action {—, —},: L x M — M. Then M is a left A°8U(L)-module if and only if (2.2)
and (2.3) holds.

3. ENVELOPING ALGEBRAS OF LEIBNIZ PAIRS

Let (A, L) be a Leibniz pair. We write A’ = A®' and denote by Q!(A) the space
of 1-forms of A, which is by definition the first syzygy of A as an A°-module, see [8,
Section 7.1]. To be precise, as an A°-module, Q!(A) = A3/I, where [ is a submodule
of A® generated by

{a@b1,—-1,8ab®1,+1,8a®b|a,be A}

We simply write the element a; ® a, ® a; + I in Q'(A) as a; ® a, ® a; when no
confusion can arise.

Lemma 3.1. Let (A, L) be a Leibniz pair. The space Q'(A) of 1-forms is a left
AgU(L)-module with the action given by

(a®@V'iX)(a, ® a, ® a;) =) aX)(a)) ® Xppy(ay) ® X3(as3)b
forall a, ® a, ® ay € Q'(A) and a @ b'8X € A4U(L).

Proof. We consider the action of L on Q!'(4), {—, —}.: L x Q'(4) — Q!(4)
defined as

ra®a®al,={xa}®a®a+a ®{x,a}®a;+a ®a,® {x, a3}

for all x € L and a; ® a, ® ay € Q'(A). By some direct calculation, we have

(x,,®@ab®1,}, ={x,a®b®1,}, +{x,1,®a®b},, 3.1
{[x. 5], 0y ® a, ® a3}, = {x. {y, a) ® a; ® a3}, }.; —{y. {x, 4, ® 2, ® a3}, }., (3.2)
{x,a(a, ® a, ® a3)}, = a{x, a; ® a, @ a3}, + {x, a}(a, ® a, ® a3), (33)
{x,(ay ®a, ®a3)a}, = {x,a, ®a, ® az},a + (a, ® a, ® a3){x, a}. (34)

Equality (3.1) is just to say that the action is well defined, and we know that the
action gives a Lie module structure on Q!'(A) by (3.2). It follows from Lemma 2.6
that Q'(A) is an A°4%(L)-module by (3.3) and (3.4). O



Downloaded by [East China University of Science and Technology] at 00:49 19 December 2015

4492 BAO AND YE
We denote Q = Q'(A) ® %(L), which is an (A°4%(L))-2(L)-bimodule.

Lemma 3.2. Keep the above notation, and let 6: A @ P — M be a k-linear map. Then
the map

a:ﬁ(@ P>M G(a,®a,8a;8X)Q®a) =ao(a,®X(x))as

is an A°dU(L)-homomorphism if and only if ¢ satisfies (2.4) and (2.5).

Proof. Assume that ¢ satisfies (2.4) and (2.5). By definition, we know that
(g, ®a,®a; X)) =6((a; ®a, ® a; ®1) @ X(v)),

and by (2.4),

(1, ®ab®1,®X)®a)
= o(ab @ X())
=ac(b® X(2)) + d(a ® X(2))b
=7((a®b®1,8X)®0)+5((1,®a®b® X) Q a).
It follows that & is well defined.
By direct calculation, we have
d((a®biX)(a, ®a,®a; QY ® )
=2 5(aXy(a) ® X5)(a2) ® X(3)(a3)b ® X4y Y @ )
=Y aXy(a))oma(X ) (ay) ® X4 Y(2)) X5 (a3)b. (3.5
On the other hand,

(a®@biX)5(a, ®a, ®a; Y @ o)

= (a ® b'tX)(a;oma(a, ® Y(x))as)

= ((a ® b'1X)(a, ® a3fil))oma(a, ® Y())

= (aXyy(a)) ® X (a3)biX 3)amala, ® Y(x))

= aXy(a) X (@mala, ® Y(2)))X 5 (a3)b

=Y aXg(a)oma(X ), (a2) ® X), (Y(2))) X5 (a3)b

=(3.5),
where the last equality is deduced from the cocommutativity of % (L). Consequently,
¢ is a homomorphism of At% (L)-modules.

Conversely, if ¢ is an A°4% (L)-homomorphism, it is easily checked that Gma
satisfies (2.4) and (2.5). O
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Definition 3.3. Let (A, L) be a Leibniz pair. The triangular matrix algebra

("% sruiw)

is called the enveloping algebra of (A, L), denoted by % (A, L).

Remark 3.4. A module (P, M,G) over U(A, L) means that P is a %(L)-module,
M is an A°g%(L)-module, and ¢: Q) ® P — M is a homomorphism of A°4%(L)-

U(L)
modules. A homomorphism (f, g): (P, M,5) — (P',M',5’) of U(A, L)-modules
means that f: P — P’ is a U(L)-homomorphism, g: M — M’ is an A°SU(L)-
homomorphism, and the following diagram commutes:

u(r)
idg@fl lg (3.6)
Q® P —— M

U(L) o’

Denote by %U(A, L)-Mod the category of U(A, L)-modules.

Theorem 3.5. Let (A, L) be a Leibniz pair. Then the category of modules over (A, L)
is isomorphic to the category of U(A, L)-modules.

Proof. First, we define a functor F: #((A, L) — U(A, L)-Mod as follows. Suppose
that (M, P, 3ma) is a module over the Leibniz pair (A, L). We define F((M, P, ma)) =
(P, M, ) with the action of %(A, L) given by setting

X 0 o) X(or)
GRa,R®a;Za@btY ) \m)  \G(a,®a,®a; 8 ZQa) + a(Y(m))b)’
where @ is given by Lemma 3.2, i.e.,
0(a, ®a,®a; ®ZQa) =a,omala, ® Z(x))a,

foralla, ®a, ®a; @ ZQ@a € Q ® P. By Lemma 3.2, we have 5: Q ® P — M is
U(L) UL)

a homomorphism of A°#%(L)-modules, and hence the triple (P, M, ¢) is a module
over U(A, L).

For a homomorphism (g, f): (M, P, gma) — (M’, P',5ma’) of (A, L)-modules,
we define F((g, f)) = (f, g). From the commutativity of the diagram (2.6), it follows
that the diagram (3.6) commutes. Therefore, (f, g): (P, M,5) — (P',M’',5’) is a
U(A, L)-homomorphism.

On the other hand, we define a functor G: U(A, L)-Mod — M(A, L) as
follows. For each left % (A, L)-module (P, M, ), G((P, M,5)) = (M, P, dma), where
P is a U(L)-module and hence a Lie module over L, and M is an A°4%(L)-module.
By Lemma 2.6, M is simultaneously an A-A-bimodule and a Lie module over L
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satisfying (2.2) and (2.3). It follows from Lemma 3.2 that the corresponding triple
(M, P, 5ma) is a module over the Leibniz pair (A, L).

For any %(A, L)-homomorphism (f, g): (P, M,5) — (P, M', ), it is easy
to check that G((f,g)) = (g f) is a homomorphism of (A, L)-modules from
(M, P,ma) to (M', P', Gma’) because the diagram (2.6) is commutative if and only
if the diagram (3.6) commutes.

The functors F and G are mutually inverse. O

4., COHOMOLOGY FOR LEIBNIZ PAIRS

Let (A, L) be a Leibniz pair. We write A/L = A/ for short.

Theorem 3.5 implies that the module category over a Leibniz pair (A, L)
has enough projective and injective objects, which enables us to construct the
cohomology theory for Leibniz pairs by using projective or injective resolution in a
standard way.

We begin with a well-known result concerning projective modules over a
general matrix triangular algebra.

A 0
M, B
Then (P, Q, 6ma) is a projective A-module if and only if P is a projective A-module
anddma: M ® P — Q is a split monomorphism of B-modules with Coker(Gma) being a

Lemma 4.1 ([1, Proposition 2.5]). Let A = be a triangular matrix algebra.

A
projective B-module.

We come back to the Leibniz pair (A, L). Consider the projective resolution
of the trivial % (L)-module k

. d; .
K, o UL SN S UL @ AN — - = UL) @ A > UL) — 0,

where

d;(X®x ANXy A2 A X))
J
=Y (D" X(x) @x A XK Ax;
k=1

+ Z (_1)p+qX®[_xp’xq]/\xl/\..._f;...)?;.../\xj

l<p<q=j
forall X ® x; Axy A--- Ax; € UL)® N, j = 1, [5, Chapter VII, Theorem 4.2]. The
standard resolution of Q!(A) as an A°-module is given as

Jy do

5433 0l4) - o,

. d; .
S, oo AP A2 gl

L]
where
i+2

00, ®a; ®@ - ®a, )=y (-1, ® - @aa, @ - ®a;;

k=1

foralla, ®a, ® -+~ ®a; 5 € A", i > 1 and J, is the canonical projection, [4].
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Taking tensor product K, ® S,, we obtain a bicomplex

H H
52,1

H
61,1

sH s
0 +—— QLA RU(L) +—2— QUA)QUL) ® AL +—2— QLA)QU(L) A2 +— -

! l !

0 0 0

where §/, =id ® d;, and 9}, = ¢, ® id. This is a bicomplex of A°f%(L)-modules.

We denote T, = A" @ U(L) for i > 0, T_; = Q, and K; = U(L) ® A/ for j >
0. By Kiinneth’s Theorem [5, Chapter V, Theorem 2.1], the total complex of the
bicomplex, denoted by @Q,,

n . n—1 .
s T AT B ST AT s S T, OT A BT, >0
i=0 i=0

is exact, where @, = 3, _, 0/, + (=1)'6}; for n > 0.

Lemma 4.2. Using the above notation, we have that

n—i (dy.¢n) n—1 n—i—1
IP. Kn’ GBT 1 A s Iy anl’ S Tifl A s i1
i i=0

— — (Ky, T_y,19) > 0
is a projective resolution of (k,0,0) as a U(A, L)-module, where

Ly :ﬁ ® Kn - 69Ti—l ®/\n7i
U(L) i=0

(0 ®a,®a;X)@ (Y ®w) = (4, ®a, ®a; @ XY) Q@ w
for n> 0.

Proof. Note that T, ® K; is isomorphic to A" ® %U(L) ® A/, which is a free

U(L)
AgU(L)-module for i, j>0. The %(L)-module K, is free and 1, is a split
monomorphism with Coker(:,) being projective, since 1, is the composition of
the natural isomorphism Q ® LK, = Q ® A" and the inclusion map Q ® A" —

@T | ® A" Tt follows from Lemma 4.1 that (K, _eaT | ® A" 1) is a projective
Ol[(A L)-module.
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By direct calculation, we have that the diagram

QwK, -2 O8K,

Lnl an_l

n . n—1 .
BT 1 QN —— @ T, 1 QA"
=0 Pn =0

is commutative and (d,, ¢,) is a homomorphism of %(A, L)-modules. By the
exactness of IK, - k — 0 and the complex @,, we know that IP, is a projective
resolution of the trivial % (A, L)-module (k, 0, 0). d

Lemma 4.3. Let (P, M, 5) be a module over U(A, L). Then
Homo, 4 1, <<Kn’ _@OTi—l A", 1,,) , (P, M, 5))

= Hom, (A", P) & (éHomk(Ai ® A", M)) .
i=1

Proof. By definition, a pair (f, g) is a %(A, L)-homomorphism from (X, ® T, ®
i=0

A" 1) to (P, M, ) if and only if f € Homy (K, P), g € 6'119HomAeﬁcu(L)(T,-_1 ®
i=0
A" M), and the diagram
d5®f

Q K, ——5QoP
u(L) u(L)

| |7

ST QA" — M
1=0 g

1=

commutes. Write g = (g,. -, & &) With g € Homyep)(T,_; ® A", M), i > 0.
The commutativity of the diagram reads as g, = go 1, = 6 o (idg ® f). Thus (f, g)
is uniquely determined by (f, g,, - , &)-

Moreover, we have isomorphisms of k-vector spaces

P) = Hom, (A", P)

Homﬂu(L) (K.,
and

Hom yeq1)(T—) ® A" M) = Hom, (A’ ® A", M)
for any n > 0 and i > 1. Therefore, there is an isomorphism of the k-vector spaces

Homqy 4 1) (K, oj‘z T, @ A", 1,), (P, M,5))

n

= Hom, (A", P) ® (@Homk(Af ® A", M)) . 0

i=1
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Recall the cohomology group H$ (A, L; M, P) of the Leibniz pair (A, L) with
coefficients in the module (M, P, Gma), which is defined as the cohomology group
of the total complex of the following bicomplex C**(A, L; M, P), see [3] for detail:

I I I

0 — Homy(A2, M) — " 5 Homy(A2® AL, M) —22 5 Homy (A2 ® A2, M)---

5vT 6vT Tév

é é

0 —— Homy(A,M) —X 5 Homp(A® A, M) —Z— Homp(A® A2, M)---

—~

54 54 Tav
0 — P — % Homg(ALP)  —2 s Homi(A2,P)
I I |
0 0 0

where 6, : Hom, (A, P) — Hom, (A ® N, M),
(6,)(a® ) =coma(a ® f(w)),
Sy : Hom, (A" ® A/, M) — Hom, (A" @ A/, M),
oy(Nap®a; @ ®a; ®w)
=ayfla;® - Qa;®w)
i-1

X (=D flay® - ®a ®aa,, ®a,,Q  Qa;®w)
1=0

+ (—l)i+1f(a0 R --®a,, ®w)a,,
8y : Hom (A' ® A/, M) — Hom, (A" @ ANV, M),

5H(f)(al®"'®ai®x0/\"'/\xj)

M-

(D' ({xp fla,®@ - ®a; @ xg AT+ Axpl,

i

Il
=3

_Zf(al®.'.®a[—l®{xlvaz}®a[+]®"'®ai®x0/\"‘3€\]"'/\xj)
t=1

+ Z (_I)P‘HIf(al®...®ai®[xp,xq]/\xo/\...)’c\p...@.../\xj)’

0<p<q<j
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and 6,: Hom, (A", P) — Hom, (A", P) is just the Chevalley-Eilenberg coboundary,
1.e.,

OOy A Axyyy)
n+1

= Z(_l)i_l[xi’ f(xl A ';C\z A x71+1)]*

i=1

+ 02 DA x AR A X Xy A ).
I<p<g=<n+l

When M = A, P = L, the Leibniz pair cohomology H/ (A, L; A, L) is denoted
by H} (A, L) for short. We introduce the following main result.

Theorem 4.4. Let (A, L) be a Leibniz pair and U(A, L) be the enveloping algebra
of (A, L). If (M, P,cma) is a module over (A, L) and (P, M, G) is its corresponding
U(A, L)-module, then

H} (A, L; M, P) = Extf;(A!L)((k, 0,0), (P, M, 7)).
Proof. Use the notation in Lemma 4.2. It follows from Lemma 4.2 that
Exti;(A,L)((k, 0,0), (P, M, 7)) = H'Hom(P,, (P, M, 7))

for any U(A, L)-module (P, M, G). By simple calculation, we know that the diagram

oy (dnsen) .
Homy(a,1)(Pr-1, (P, M, 7)) Ldnen)?, Homy,(a,1)(Pn, (P, M, 7))

= |=

® C%(A,L;M,P) — @ C“(A,L;M,P)
i+j=n—1 i+j=n

is commutative, where %, = (K,,, Underseti = 06T,_, ® A", 1,), and the vertical
isomorphisms are given by the proof of Lemma 4.3. It follows that the total complex
of the bicomplex C**(A, L; M, P) is isomorphic to the complex Hom(P,, (P, M, )),
and hence

H} (A, L; M, P) = Extly, ,,((k, 0,0), (P, M, ).

5. A LONG EXACT SEQUENCE

In this section, we give a long exact sequence and apply it to characterize the
Leibniz pair cohomology.
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Consider the bicomplex

| | I

0 — Homg(A% M) —2 4 Homy (A3 ® AL, M) —22 5 Homy, (A3 ® A2, M)---

o] o] T

0 — Homg(A2, M) — 4 Homy(A2® AL, M) —22 5 Homy (A2 ® A2, M) --

sv| ov | [av

0 ———— Homg(A, M) L SN Homy (A ® AL, M) L SN Homy (A ® A2, M) ---

| [ I

0 0 0
which is a sub-bicomplex of C**(A, L; M, P) and denoted by Q**(A, L; M).
Lemma 5.1. Keeping the above notation, we have
H"Tot(Q"*(A, L; M)) = Ext}.,,,,,(Q'(A), M).
Proof. Consider the standard resolution of the A°-module Q'(A)
e A g ...—>A4i>A3—>0,
and the projective resolution of trivial % (L)-module k

4 .
S UL O N D UL @ AN = e UL) D UL — 0,

Taking the tensor product of these resolutions, we obtain the following bicomplex,
denoted by Q, (A, L),

! l !

5 M
0 AQUL) +—— ABQUL)RA +—2— A QUL)O A2 +— -

5;{0l &Kll 53{%
4 3350 4 1 551 4 2
0 +—— A*QU(L) +—— A*QU(L)® AN +—— A*QU(L)®N? +— ---

5{{@ 5{{{ 5}{%

si s
0 —— A3QUL) +—2— ABQUL)RA! +—2— ABQUL)OAN2 +—n -

! ! !

0 0 0
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The following argument is similar to the calculation of quasi-Poisson cohomology
groups in [2, Theorem 3.7]. Since A™2 ® U(L) ® A/ is free as an A°#%(L)-module
for i, j > 0, we know H, (Tot(Q, ,(A, L))) =0 for n > 1 and Hy(Tot(Q, ,(A, L))) =
Q'(A). The complex Tot(Q,,.(A, L)) is a projective resolution of Q'(A) as an
A4U(L)-module. Applying the functor Hom s ;) (—, M) on Q, (A, L) and the k-
linear isomorphism

Hom e,y (A @ U(L) ® N, M) = Hom, (A" ® N, M),
we immediately get the bicomplex Q**(A, L; M). Consequently,
H"Tot(Q"*(A, L; M)) = TotH"Q"*(A, L; M) = Exty.,,,,,(Q'(A), M). O

Remark 5.2. Applying a general result for smash products, see [2, Theorem 5.2]
for details, we have a Grothendieck spectral sequence

Extf,, (k, Ext}.(Q'(A), M)) = Ext}!,, (Q'(A), M). (5.1)
For some special cases, it can be used to calculate the Ext-group at the right side.

Theorem 5.3. Ler (A, L) be a Leibniz pair and (M, P, Gma) be a module over (A, L).
Then we have the long exact sequence

0 — Hom ey, (Q'(A), M) — H} (A, L; M, P) > HL"(L, P)
— Ext}, (Q'(A), M) - H] (A, L; M, P) > HL'(L, P) — -

— H},(A, L; M, P) - HL"(L, P) — Ext}t},, (Q'(A), M) > -+,

where HL"(L, P) is the nth cohomology group of the Lie algebra L with coefficients
in P.

Proof. By the bicomplex used to define Leibniz pair cohomology, we have a short
exact sequence of complexes

0 — Tot(Q**(A, L; M)) — Tot(C**(A, L; M, P)) — Hom,(A*, P) — 0.

By the long exact sequence theorem and Lemma 5.1, we have the long exact
sequence. O

There are some simple observations about LP-cohomology group from
Theorem 5.3.

Corollary 5.4. Let (A, L) be a Leibniz pair and (M, P) be a module over (A, L).
If A,L are finite-dimensional, and gl.dimA < oo, then H},(A,L; M,P)=0 for
sufficiently large n.

Proof. 1If the associative algebra A is finite-dimensional and gl.dimA < oo,
then there exists p >0 such that Ext.(Q'(A),M)=0 for all n>p since
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proj.dim,.A = gl.dimA, see [4, Section 1.5]. On the other hand, A? = 0 and hence
HLY(L, N) = Extf{m) (k, N) = 0 for any ¢ > dim, (L) and any Lie module N over L.
In this case, the spectral sequence (5.1) is congruent, and Extﬁfng,,/(L)(Ql(A), M) =0
for large n. It follows from the long exact sequence in Theorem 5.3 that
H} (A, L; M, P) = 0 for sufficiently large n. O

Example 5.5. Let A = M, (k) be the 2 x 2 full matrix algebra, L = 3l,(k) be the
symplectic algebra, and pu(x)(a) =[x, a] = xa — ax for x € L, a € A. Clearly, (A, L)
is a Leibniz pair. We have the following simple facts:

Ext).(Q'(A), A) = HH"'(A) =0 forp>1,
Hom,,.(Q'(A), A) = Der(A) = sl,(k) = L.

By the spectral sequence (5.1), we have

Ext:em(m(ﬂl (A), A) = Exty,(k, L) = HL"(L) = 0

for any n > 0, where the last equality follows from [6, Chapter VII, Proposition 6.1
and 6.3]. It follows from Theorem 5.3 that H},(A, L) = 0 for any n > 0.
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