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We introduce the enveloping algebra for a Leibniz pair, and show that the category
of modules over a Leibniz pair is isomorphic to the category of left modules over its
enveloping algebra. Consequently, we show that the cohomology theory for a Leibniz
pair introduced by Flato, Gerstenhaber, and Voronov can be interpreted by Ext-groups
of modules over the enveloping algebra.
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1. INTRODUCTION

Leibniz pairs were introduced by Flato, Gerstenhaber, and Voronov in the
study of deformation theory for Poisson algebras in [3]. A Leibniz pair �A� L�

consists of an associative algebra A and a Lie algebra L with an action of L on A.
Roughly speaking, a Leibniz pair can be viewed as an infinitesimal version of an
algebra with a group of operators acting on it.

An important example of a Leibniz pair comes from a smooth manifold,
especially from a Poisson or symplectic manifold, where the Lie algebra of smooth
vector fields acts on the algebra of smooth functions on it. Leibniz pair also arises
whenever a Lie group acts on an associative algebra. For instance, an action of a
Lie group G on a smooth manifold M naturally induces an action of the Lie algebra
of G on the algebra of smooth functions on M .

A cohomology theory for Leibniz pairs (LP-cohomology for short) was
introduced in [3], and they showed that the LP-cohomology controls the formal
deformation of Leibniz pairs. They also defined modules over a Leibniz pair.
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4488 BAO AND YE

A natural question asked in [3] is whether the LP-cohomology can be explained by
Ext-groups of modules.

In this article, we construct for each Leibniz pair �A� L� an associative algebra
� ��A� L�, called its enveloping algebra. We prove the following result as given in
Theorem 3.5.

Theorem 1. Let �A� L� be a Leibniz pair and ��A� L� be its enveloping algebra. Then
the category of modules over �A� L� is isomorphic to the category of ��A� L�-modules.

Consequently, the category of modules over a Leibniz pair has enough
projective and injective objects, which enables the usual construction of cohomology
theory for a Leibniz pair by using projective or injective resolutions.

Denote by Hn
LP�A� L� M� P� the n-th LP-cohomology group of the Leibniz

pair �A� L� with coefficients in an �A� L�-module �M� P� ��. By Theorem 1, the
�A� L�-module �M� P� �� corresponds to a module �P� M� �̃� over ��A� L�. We
consider the Ext-groups of the trivial module �k� 0� 0� over ��A� L� in a standard
way, and prove the following result, which shows that the LP-chomology is exactly
interpreted by certain Ext-groups. This gives an affirmative answer to the question
raised above. For more details we refer to Theorem 4.4.

Theorem 2. Keep the above notation. Then we have isomorphisms

Hn
LP�A� L� M� P� � Extn

��A�L���k� 0� 0�� �P� M� �̃���

for all n ≥ 0.

The article is organized as follows. In Section 2, we briefly recall some basic
facts on Leibniz pairs and their modules. Section 3 deals with the construction of
the enveloping algebra for a Leibniz pair and a proof of Theorem 1 is given there.
In Section 4, we will calculate the Ext-groups of the trivial module over a Leibniz
pair and show the isomorphisms in Theorem 2. In Section 5, we will construct a
long exact sequence and apply it to calculate LP cohomology groups.

2. PRELIMINARIES

Throughout k will be a fixed field of characteristic 0, all algebras considered
are over k and an associative algebra A has a multiplicative identity 1A. We write
⊗ = ⊗k for simplicity.

Definition 2.1 ([3]). A Leibniz pair �A� L� consists of an associative algebra A and
a Lie algebra L, connected by a Lie algebra homomorphism �� L → Der�A�, the Lie
algebra of derivations of A into itself.

Usually, elements in A will be denoted by a� b� c� · · · and those of L by
x� y� z� · · · . The Lie algebra homomorphism �� L → Der�A� just says that A is a Lie
module over L with the action 	−� −
� L × A → A given by 	x� a
 = ��x��a�, which
satisfies the Leibniz rule

	x� ab
 = a	x� b
 + 	x� a
b (2.1)

for all x ∈ L and a� b ∈ A.
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4489

Remark 2.2. Recall that a noncommutative Poisson algebra A is both an associative
algebra and a Lie algebra with the Lie bracket 	−� −
 satisfying the Leibniz rule

	ab� c
 = a	b� c
 + 	a� c
b

for all a� b� c ∈ A, see also [10]. Clearly, a noncommutative Poisson algebra A
corresponds to a Leibniz pair �A� A� together with the structure morphism � given
by setting ��a� = 	a� −
 for all a ∈ A.

Definition 2.3 ([3]). Let �A� L� be a Leibniz pair. A module over �A� L� means a
triple �M� P� ��, where P is a Lie module over L with the action �−� −�∗� L × P → P,
M is both an A-A-bimodule and a Lie module over L with Lie action 	−� −
∗� L ×
M → M , which satisfies

	x� am
∗ = 	x� a
m + a	x� m
∗� (2.2)

	x� ma
∗ = m	x� a
 + 	x� m
∗a� (2.3)

for x ∈ L� m ∈ M� a ∈ A, and �� A ⊗ P → M is a k-linear function satisfying

��ab ⊗ 
� = a��b ⊗ 
� + ��a ⊗ 
�b (2.4)

	x� ��a ⊗ 
�
∗ = ��	x� a
 ⊗ 
� + ��a ⊗ �x� 
�∗� (2.5)

for a� b ∈ A� 
 ∈ P and x ∈ L.

Remark 2.4. The above definition coincides with the original one in [3]. More
precisely, let P be a Lie module over L and M be an A-A-bimodule. Denote by
L � P (resp. A � M) the Lie (resp. associative) semidirect product of L and P (resp.
A and M).

Recall that a module over �A� L� introduced in [3] means a pair �M� P�,
provided that P is a Lie module over L, M is an A-A-bimodule, and there is a Lie
algebra homomorphism Hat� � L � P → Der�A � M�, which satisfies the following
conditions:

(1) Hat���x� 0��a� 0�� = ��x��a� for any x ∈ L� a ∈ A;
(2) Hat���x� 0��0� m��� Hat���0� 
����a� 0�� ∈ M for any x ∈ L� a ∈ A� m ∈ M� 
 ∈

P;
(3) Hat���0� 
��0� m�� = 0 for any 
 ∈ P� m ∈ M .

A triple �M� P� �� corresponds to a pair �M� P� together with a Lie algebra
homomorphism Hat� � L � P → Der�A � M� given by

Hat���x� 
��a� m�� = ��x��a� + 	x� m
∗ + ��a ⊗ 
�

for all x ∈ L� 
 ∈ P� a ∈ A� m ∈ M .

A homomorphism �g� f�� �M� P� �� → �M ′� P ′� �′� of �A� L�-modules means that
g� M → M ′ is a homomorphism of both A-A-bimodules and Lie modules, f � P → P ′

is a homomorphism of Lie modules, and the diagram
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4490 BAO AND YE

commutes. We denote the category of �A� L�-modules by ��A� L�.

Remark 2.5. Let �A� ·� 	−� −
� be a noncommutative Poisson algebra. Recall from
[10] a quasi-Poisson module M over A is both an A-A-bimodule and a Lie module
over A with the action given by 	−� −
∗� A × M → M , which satisfies

	a� bm
∗ = b	a� m
∗ + 	a� b
m�

	a� mb
∗ = 	a� m
∗b + m	a� b


for all a� b ∈ A and m ∈ M . In addition, if

	ab� m
∗ = a	b� m
∗ + 	a� m
∗b

holds for all a� b ∈ A and m ∈ M , then we say that M is a Poisson module over A.
Let �A� A� be the corresponding Leibniz pair. Assume that M is both an A-A-

bimodule and a Lie module over A with the action given by 	−� −
∗� A × M → M .
Then

(i) M is a quasi-Poisson module over A if and only if �M� M� �� is a module over
the Leibniz pair �A� A�, where � is given by taken the commutator in the sense
of associative action on M , i.e. ��a ⊗ m� = am − ma for all a ∈ A� m ∈ M .

(ii) M is a Poisson module over A if and only if �M� M� �� is a module over the
Leibniz pair �A� A�, where � is given by the Lie action of A on M , i.e., ��a ⊗
m� = 	a� m
∗ for all a ∈ A� m ∈ M .

Therefore, the quasi-Poisson module category and Poisson module category
over A can be viewed as subcategories (but not full subcategories) of the module
category over the corresponding Leibniz pair �A� A�.

Denote by Aop the opposite algebra of the associative algebra A. Usually, we
use a to denote an element in A and a′ its counterpart in Aop to show the difference.
Denote the enveloping algebra of A by Ae = A ⊗ Aop and the universal enveloping
algebra of L by ��L�. In this article, elements in ��L� is written as X� Y� Z� · · · and
the identity element in ��L� is written as 1. Note that ��L� is a cocommutative
Hopf algebra, with the comultiplication denoted by ��X� = ∑

X�1� ⊗ X�2� for any
X ∈ ��L�, where

∑
is the Sweedler’s notation, see [9, Section 4.0] for more details.

Suppose that P is a Lie module over L. Equivalently, P is a ��L�-module.
We denote the action ��L� × P → P as �X� 
� 	→ X�
� for any X ∈ ��L� and 
 ∈ P.
Note that ��L� is a cocommutative Hopf algebra and Ae is also a ��L�-module
with the action given by

X�a ⊗ b′� = ∑
X�1��a� ⊗ �X�2��b��′
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4491

for X ∈ ��L�� a ⊗ b′ ∈ Ae. Moreover, Ae is a ��L�-module algebra, which means
that the multiplication Ae ⊗ Ae → Ae is a ��L�-homomorphism. The smash product
Ae���L� is an associative algebra, see [9, Section 7.2]. Recall that Ae���L� = Ae ⊗
��L� as a k-vector space. The multiplication is given by

�a ⊗ b′�X��c ⊗ d′�Y� = ∑
aX�1��c� ⊗ �X�2��d�b�′�X�3�Y�

The following lemma is straightforward, and we omit the proof here.

Lemma 2.6. Let M be simultaneously an A-A-bimodule and a Lie module over L with
the action 	−� −
∗� L × M → M . Then M is a left Ae���L�-module if and only if (2.2)
and (2.3) holds.

3. ENVELOPING ALGEBRAS OF LEIBNIZ PAIRS

Let �A� L� be a Leibniz pair. We write Ai = A⊗i and denote by �1�A� the space
of 1-forms of A, which is by definition the first syzygy of A as an Ae-module, see [8,
Section 7.1]. To be precise, as an Ae-module, �1�A� = A3/I , where I is a submodule
of A3 generated by

	a ⊗ b ⊗ 1A − 1A ⊗ ab ⊗ 1A + 1A ⊗ a ⊗ b 
 a� b ∈ A
�

We simply write the element a1 ⊗ a2 ⊗ a3 + I in �1�A� as a1 ⊗ a2 ⊗ a3 when no
confusion can arise.

Lemma 3.1. Let �A� L� be a Leibniz pair. The space �1�A� of 1-forms is a left
Ae���L�-module with the action given by

�a ⊗ b′�X��a1 ⊗ a2 ⊗ a3� = ∑
aX�1��a1� ⊗ X�2��a2� ⊗ X�3��a3�b

for all a1 ⊗ a2 ⊗ a3 ∈ �1�A� and a ⊗ b′�X ∈ Ae���L�.

Proof. We consider the action of L on �1�A�, 	−� −
∗� L × �1�A� → �1�A�
defined as

	x� a1 ⊗ a2 ⊗ a3
∗ = 	x� a1
 ⊗ a2 ⊗ a3 + a1 ⊗ 	x� a2
 ⊗ a3 + a1 ⊗ a2 ⊗ 	x� a3


for all x ∈ L and a1 ⊗ a2 ⊗ a3 ∈ �1�A�. By some direct calculation, we have

	x� 1A ⊗ ab ⊗ 1A
∗ = 	x� a ⊗ b ⊗ 1A
∗ + 	x� 1A ⊗ a ⊗ b
∗� (3.1)

	�x� y�� a1 ⊗ a2 ⊗ a3
∗ = 	x� 	y� a1 ⊗ a2 ⊗ a3
∗
∗� −	y� 	x� a1 ⊗ a2 ⊗ a3
∗
∗� (3.2)

	x� a�a1 ⊗ a2 ⊗ a3�
∗ = a	x� a1 ⊗ a2 ⊗ a3
∗ + 	x� a
�a1 ⊗ a2 ⊗ a3�� (3.3)

	x� �a1 ⊗ a2 ⊗ a3�a
∗ = 	x� a1 ⊗ a2 ⊗ a3
∗a + �a1 ⊗ a2 ⊗ a3�	x� a
� (3.4)

Equality (3.1) is just to say that the action is well defined, and we know that the
action gives a Lie module structure on �1�A� by (3.2). It follows from Lemma 2.6
that �1�A� is an Ae���L�-module by (3.3) and (3.4). �
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4492 BAO AND YE

We denote � = �1�A� ⊗ ��L�, which is an �Ae���L��-��L�-bimodule.

Lemma 3.2. Keep the above notation, and let �� A ⊗ P → M be a k-linear map. Then
the map

�̃� � ⊗
��L�

P → M� �̃��a1 ⊗ a2 ⊗ a3 ⊗ X� ⊗ 
� = a1��a2 ⊗ X�
��a3

is an Ae���L�-homomorphism if and only if � satisfies (2.4) and (2.5).

Proof. Assume that � satisfies (2.4) and (2.5). By definition, we know that

�̃��a1 ⊗ a2 ⊗ a3 ⊗ X� ⊗ 
� = �̃��a1 ⊗ a2 ⊗ a3 ⊗ 1� ⊗ X�
���

and by (2.4),

�̃��1A ⊗ ab ⊗ 1A ⊗ X� ⊗ 
�

= ��ab ⊗ X�
��

= a��b ⊗ X�
�� + ��a ⊗ X�
��b

= �̃��a ⊗ b ⊗ 1A ⊗ X� ⊗ 
� + �̃��1A ⊗ a ⊗ b ⊗ X� ⊗ 
��

It follows that �̃ is well defined.
By direct calculation, we have

�̃��a ⊗ b′�X��a1 ⊗ a2 ⊗ a3 ⊗ Y ⊗ 
�

= ∑
�̃�aX�1��a1� ⊗ X�2��a2� ⊗ X�3��a3�b ⊗ X�4�Y ⊗ 
�

= ∑
aX�1��a1�̃�ma�X�2��a2� ⊗ X�4�Y�
��X�3��a3�b� (3.5)

On the other hand,

�a ⊗ b′�X�̃��a1 ⊗ a2 ⊗ a3 ⊗ Y ⊗ 
�

= �a ⊗ b′�X��a1�̃ma�a2 ⊗ Y�
��a3�

= ��a ⊗ b′�X��a1 ⊗ a′
3�1��̃�ma�a2 ⊗ Y�
��

= ∑
�aX�1��a1� ⊗ X�2��a3�b�X�3��̃�ma�a2 ⊗ Y�
��

= ∑
aX�1��a1�X�3��̃�ma�a2 ⊗ Y�
���X�2��a3�b

= ∑
aX�1��a1�̃�ma�X�3��1�

�a2� ⊗ X�3��2�
�Y�
���X�2��a3�b

= �3�5��

where the last equality is deduced from the cocommutativity of ��L�. Consequently,
�̃ is a homomorphism of Ae���L�-modules.

Conversely, if �̃ is an Ae���L�-homomorphism, it is easily checked that �̃ma
satisfies (2.4) and (2.5). �
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4493

Definition 3.3. Let �A� L� be a Leibniz pair. The triangular matrix algebra(
��L� 0

� Ae���L�

)

is called the enveloping algebra of �A� L�, denoted by ��A� L�.

Remark 3.4. A module �P� M� �̃� over ��A� L� means that P is a ��L�-module,
M is an Ae���L�-module, and �̃ � � ⊗

��L�
P → M is a homomorphism of Ae���L�-

modules. A homomorphism �f� g�� �P� M� �̃� → �P ′� M ′� �̃′� of ��A� L�-modules
means that f � P → P ′ is a ��L�-homomorphism, g � M → M ′ is an Ae���L�-
homomorphism, and the following diagram commutes:

Denote by ��A� L�-Mod the category of ��A� L�-modules.

Theorem 3.5. Let �A� L� be a Leibniz pair. Then the category of modules over �A� L�
is isomorphic to the category of ��A� L�-modules.

Proof. First, we define a functor F� ��A� L� → ��A� L�-Mod as follows. Suppose
that �M� P� �̃ma� is a module over the Leibniz pair �A� L�. We define F��M� P� �̃ma�� =
�P� M� �̃� with the action of ��A� L� given by setting(

X 0
a1 ⊗ a2 ⊗ a3 ⊗ Z a ⊗ b′�Y

)(


m

)
=

(
X�
�

�̃�a1 ⊗ a2 ⊗ a3 ⊗ Z ⊗ 
� + a�Y�m��b

)
�

where �̃ is given by Lemma 3.2, i.e.,

�̃�a1 ⊗ a2 ⊗ a3 ⊗ Z ⊗ 
� = a1�̃ma�a2 ⊗ Z�
��a3

for all a1 ⊗ a2 ⊗ a3 ⊗ Z ⊗ 
 ∈ � ⊗
��L�

P. By Lemma 3.2, we have �̃� � ⊗
��L�

P → M is

a homomorphism of Ae���L�-modules, and hence the triple �P� M� �̃� is a module
over ��A� L�.

For a homomorphism �g� f�� �M� P� �̃ma� → �M ′� P ′� �̃ma′� of �A� L�-modules,
we define F��g� f�� = �f� g�. From the commutativity of the diagram (2.6), it follows
that the diagram (3.6) commutes. Therefore, �f� g�� �P� M� �̃� → �P ′� M ′� �̃′� is a
��A� L�-homomorphism.

On the other hand, we define a functor G� ��A� L�-Mod → ��A� L� as
follows. For each left ��A� L�-module �P� M� �̃�, G��P� M� �̃�� = �M� P� �̃ma�, where
P is a ��L�-module and hence a Lie module over L, and M is an Ae���L�-module.
By Lemma 2.6, M is simultaneously an A-A-bimodule and a Lie module over L
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4494 BAO AND YE

satisfying (2.2) and (2.3). It follows from Lemma 3.2 that the corresponding triple
�M� P� �̃ma� is a module over the Leibniz pair �A� L�.

For any ��A� L�-homomorphism �f� g�� �P� M� �̃� → �P ′� M ′� �̃′�, it is easy
to check that G��f� g�� = �g� f� is a homomorphism of �A� L�-modules from
�M� P� �̃ma� to �M ′� P ′� �̃ma′� because the diagram (2.6) is commutative if and only
if the diagram (3.6) commutes.

The functors F and G are mutually inverse. �

4. COHOMOLOGY FOR LEIBNIZ PAIRS

Let �A� L� be a Leibniz pair. We write ∧jL = ∧j for short.
Theorem 3.5 implies that the module category over a Leibniz pair �A� L�

has enough projective and injective objects, which enables us to construct the
cohomology theory for Leibniz pairs by using projective or injective resolution in a
standard way.

We begin with a well-known result concerning projective modules over a
general matrix triangular algebra.

Lemma 4.1 ([1, Proposition 2.5]). Let � =
(

A 0
BMA B

)
be a triangular matrix algebra.

Then �P� Q� �̃ma� is a projective �-module if and only if P is a projective A-module
and �̃ma� M ⊗

A
P → Q is a split monomorphism of B-modules with Coker�̃�ma� being a

projective B-module.

We come back to the Leibniz pair �A� L�. Consider the projective resolution
of the trivial ��L�-module k

�• · · · → ��L� ⊗ ∧j
dj−→ ��L� ⊗ ∧j−1 → · · · → ��L� ⊗ ∧1 d1−→ ��L� → 0�

where

dj�X ⊗ x1 ∧ x2 ∧ · · · ∧ xj�

=
j∑

k=1

�−1�k−1X�xk� ⊗ x1 ∧ · · · x̂k · · · ∧ xj

+ ∑
1≤p<q≤j

�−1�p+qX ⊗ �xp� xq� ∧ x1 ∧ · · · x̂p · · · x̂q · · · ∧ xj

for all X ⊗ x1 ∧ x2 ∧ · · · ∧ xj ∈ ��L� ⊗ ∧j , j ≥ 1, [5, Chapter VII, Theorem 4.2]. The
standard resolution of �1�A� as an Ae-module is given as

�• · · · → Ai+3 �i−→ Ai+2 → · · · → A4 �1−→ A3 �0−→ �1�A� → 0�

where

�i�a1 ⊗ a2 ⊗ · · · ⊗ ai+3� =
i+2∑
k=1

�−1�i−1a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ ai+3

for all a1 ⊗ a2 ⊗ · · · ⊗ ai+3 ∈ Ai+3, i ≥ 1 and �0 is the canonical projection, [4].
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4495

Taking tensor product �• ⊗ �•, we obtain a bicomplex

where �H
i�j = id ⊗ dj , and �V

i�j = �i ⊗ id. This is a bicomplex of Ae���L�-modules.
We denote Ti = Ai+3 ⊗ ��L� for i ≥ 0, T−1 = �, and Kj = ��L� ⊗ ∧j for j ≥

0. By Künneth’s Theorem [5, Chapter V, Theorem 2.1], the total complex of the
bicomplex, denoted by �•,

· · · → n⊕
i=0

Ti−1 ⊗ ∧n−i
�n−→ n−1⊕

i=0
Ti−1 ⊗ ∧n−i−1 → · · · → T0 ⊕ T−1 ⊗ ∧1 �0−→ T−1 → 0

is exact, where �n = ∑
i+j=n �H

i�j + �−1�i�V
i�j for n ≥ 0.

Lemma 4.2. Using the above notation, we have that

�• · · · →
(

Kn�
n⊕

i=0
Ti−1 ⊗ ∧n−i� �n

)
�dn��n�−−−→

(
Kn−1�

n−1⊕
i=0

Ti−1 ⊗ ∧n−i−1� �n−1

)
→ · · · → �K0� T−1� �0� → 0

is a projective resolution of �k� 0� 0� as a ��A� L�-module, where

�n � � ⊗
��L�

Kn → n⊕
i=0

Ti−1 ⊗ ∧n−i

�a1 ⊗ a2 ⊗ a3 ⊗ X� ⊗ �Y ⊗ �� 	→ �a1 ⊗ a2 ⊗ a3 ⊗ XY� ⊗ �

for n ≥ 0.

Proof. Note that Ti ⊗
��L�

Kj is isomorphic to Ai+3 ⊗ ��L� ⊗ ∧j , which is a free

Ae���L�-module for i� j ≥ 0. The ��L�-module Kn is free and �n is a split
monomorphism with Coker��n� being projective, since �n is the composition of
the natural isomorphism � ⊗ LKn � � ⊗ ∧n and the inclusion map � ⊗ ∧n ↪→
n⊕

i=0
Ti−1 ⊗ ∧n−i. It follows from Lemma 4.1 that �Kn�

n⊕
i=0

Ti−1 ⊗ ∧n−i� �n� is a projective

��A� L�-module.
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4496 BAO AND YE

By direct calculation, we have that the diagram

is commutative and �dn� �n� is a homomorphism of ��A� L�-modules. By the
exactness of �• → k → 0 and the complex �•, we know that �• is a projective
resolution of the trivial ��A� L�-module �k� 0� 0�. �

Lemma 4.3. Let �P� M� �̃� be a module over ��A� L�. Then

Hom��A�L�

((
Kn�

n⊕
i=0

Ti−1 ⊗ ∧n−i� �n

)
� �P� M� �̃�

)

� Homk�∧n� P� ⊕
(

n⊕
i=1

Homk�A
i ⊗ ∧n−i� M�

)
�

Proof. By definition, a pair �f� g� is a ��A� L�-homomorphism from �Kn�
n⊕

i=0
Ti−1 ⊗

∧n−i� �n� to �P� M� �̃� if and only if f ∈ Hom��L��Kn� P�, g ∈ n⊕
i=0

HomAe���L��Ti−1 ⊗
∧n−i� M�, and the diagram

commutes. Write g = �gn� · · · � g1� g0� with gi ∈ HomAe���L��Ti−1 ⊗ ∧n−i� M�, i ≥ 0.
The commutativity of the diagram reads as g0 = g � �n = �̃ � �id� ⊗ f�. Thus �f� g�
is uniquely determined by �f� gn� · · · � g1�.

Moreover, we have isomorphisms of k-vector spaces

Hom��L��Kn� P� � Homk�∧n� P�

and

HomAe���L��Ti−1 ⊗ ∧n−i� M� � Homk�A
i ⊗ ∧n−i� M�

for any n ≥ 0 and i ≥ 1. Therefore, there is an isomorphism of the k-vector spaces

Hom��A�L���Kn� ⊕
0≤i≤n

Ti−1 ⊗ ∧n−i� �n�� �P� M� �̃��

� Homk�∧n� P� ⊕
(

n⊕
i=1

Homk�A
i ⊗ ∧n−i� M�

)
�

�
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4497

Recall the cohomology group H•
LP�A� L� M� P� of the Leibniz pair �A� L� with

coefficients in the module �M� P� �̃ma�, which is defined as the cohomology group
of the total complex of the following bicomplex C•�•�A� L� M� P�, see [3] for detail:

where �v � Homk�∧j� P� → Homk�A ⊗ ∧j� M�,

��vf��a ⊗ �� = �̃ma�a ⊗ f�����

�V � Homk�A
i ⊗ ∧j� M� → Homk�A

i+1 ⊗ ∧j� M�,

�V �f��a0 ⊗ a1 ⊗ · · · ⊗ ai ⊗ ��

= a0f�a1 ⊗ · · · ⊗ ai ⊗ ��

+
i−1∑
l=0

�−1�l+1f�a0 ⊗ · · · ⊗ al−1 ⊗ alal+1 ⊗ al+2 ⊗ · · · ⊗ ai ⊗ ��

+ �−1�i+1f�a0 ⊗ · · · ⊗ ai−1 ⊗ ��ai�

�H � Homk�A
i ⊗ ∧j� M� → Homk�A

i ⊗ ∧j+1� M�,

�H�f��a1 ⊗ · · · ⊗ ai ⊗ x0 ∧ · · · ∧ xj�

=
j∑

l=0

�−1�l
(
	xl� f�a1 ⊗ · · · ⊗ ai ⊗ x0 ∧ · · · x̂l · · · ∧ xj�
∗

−
i∑

t=1

f�a1 ⊗ · · · ⊗ at−1 ⊗ 	xl� at
 ⊗ at+1 ⊗ · · · ⊗ ai ⊗ x0 ∧ · · · x̂l · · · ∧ xj�
)

+ ∑
0≤p<q≤j

�−1�p+qf�a1 ⊗ · · · ⊗ ai ⊗ �xp� xq� ∧ x0 ∧ · · · x̂p · · · x̂q · · · ∧ xj��
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4498 BAO AND YE

and �h� Homk�∧n� P� → Homk�∧n+1� P� is just the Chevalley–Eilenberg coboundary,
i.e.,

��hf��x1 ∧ · · · ∧ xn+1�

=
n+1∑
i=1

�−1�i−1�xi� f�x1 ∧ · · · x̂i · · · ∧ xn+1��∗

+ ∑
1≤p<q≤n+1

�−1�p+qf��xp� xq� ∧ x1 ∧ · · · x̂p · · · x̂q · · · ∧ xn+1��

When M = A, P = L, the Leibniz pair cohomology Hn
LP�A� L� A� L� is denoted

by Hn
LP�A� L� for short. We introduce the following main result.

Theorem 4.4. Let �A� L� be a Leibniz pair and ��A� L� be the enveloping algebra
of �A� L�. If �M� P� �̃ma� is a module over �A� L� and �P� M� �̃� is its corresponding
��A� L�-module, then

Hn
LP�A� L� M� P� � Extn

��A�L���k� 0� 0�� �P� M� �̃���

Proof. Use the notation in Lemma 4.2. It follows from Lemma 4.2 that

Extn
��A�L���k� 0� 0�� �P� M� �̃�� � HnHom��•� �P� M� �̃��

for any ��A� L�-module �P� M� �̃�. By simple calculation, we know that the diagram

is commutative, where �n = �Kn�
n

�nderseti = 0⊕Ti−1 ⊗ ∧n−i� �n�, and the vertical
isomorphisms are given by the proof of Lemma 4.3. It follows that the total complex
of the bicomplex C•�•�A� L� M� P� is isomorphic to the complex Hom��•� �P� M� �̃��,
and hence

Hn
LP�A� L� M� P� � Extn

��A�L���k� 0� 0�� �P� M� �̃���
�

5. A LONG EXACT SEQUENCE

In this section, we give a long exact sequence and apply it to characterize the
Leibniz pair cohomology.
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4499

Consider the bicomplex

which is a sub-bicomplex of C•�•�A� L� M� P� and denoted by Q•�•�A� L� M�.

Lemma 5.1. Keeping the above notation, we have

HnTot�Q•�•�A� L� M�� � Extn
Ae���L���

1�A�� M��

Proof. Consider the standard resolution of the Ae-module �1�A�

· · · → Ai+3 �i−→ Ai+2 → · · · → A4 �1−→ A3 → 0�

and the projective resolution of trivial ��L�-module k

· · · → ��L� ⊗ ∧j
dj−→ ��L� ⊗ ∧j−1 → · · · → ��L�

d1−→ ��L� → 0�

Taking the tensor product of these resolutions, we obtain the following bicomplex,
denoted by Q•�•�A� L�,
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4500 BAO AND YE

The following argument is similar to the calculation of quasi-Poisson cohomology
groups in [2, Theorem 3.7]. Since Ai+2 ⊗ ��L� ⊗ ∧j is free as an Ae���L�-module
for i� j ≥ 0, we know Hn�Tot�Q•�•�A� L��� = 0 for n ≥ 1 and H0�Tot�Q•�•�A� L��� =
�1�A�. The complex Tot�Q•�•�A� L�� is a projective resolution of �1�A� as an
Ae���L�-module. Applying the functor HomAe���L��−� M� on Q•�•�A� L� and the k-
linear isomorphism

HomAe���L��A
i+2 ⊗ ��L� ⊗ ∧j� M� � Homk�A

i ⊗ ∧j� M��

we immediately get the bicomplex Q•�•�A� L� M�. Consequently,

HnTot�Q•�•�A� L� M�� � TotHnQ•�•�A� L� M� � Extn
Ae���L���

1�A�� M�� �

Remark 5.2. Applying a general result for smash products, see [2, Theorem 5.2]
for details, we have a Grothendieck spectral sequence

Extq
��L��k� Extp

Ae��1�A�� M�� �⇒ Extp+q
Ae���L���

1�A�� M�� (5.1)

For some special cases, it can be used to calculate the Ext-group at the right side.

Theorem 5.3. Let �A� L� be a Leibniz pair and �M� P� �̃ma� be a module over �A� L�.
Then we have the long exact sequence

0 → HomAe���L���
1�A�� M� → H0

LP�A� L� M� P� → HL0�L� P�

→ Ext1
Ae���L���

1�A�� M� → H1
LP�A� L� M� P� → HL1�L� P� → · · ·

→ Hn
LP�A� L� M� P� → HLn�L� P� → Extn+1

Ae���L���
1�A�� M� → · · · �

where HLn�L� P� is the nth cohomology group of the Lie algebra L with coefficients
in P.

Proof. By the bicomplex used to define Leibniz pair cohomology, we have a short
exact sequence of complexes

0 → Tot�Q•�•�A� L� M�� → Tot�C•�•�A� L� M� P�� → Homk�∧•� P� → 0�

By the long exact sequence theorem and Lemma 5.1, we have the long exact
sequence. �

There are some simple observations about LP-cohomology group from
Theorem 5.3.

Corollary 5.4. Let �A� L� be a Leibniz pair and �M� P� be a module over �A� L�.
If A� L are finite-dimensional, and gl�dimA < �, then Hn

LP�A� L� M� P� = 0 for
sufficiently large n.

Proof. If the associative algebra A is finite-dimensional and gl.dimA < �,
then there exists p > 0 such that Extn

Ae��1�A�� M� = 0 for all n ≥ p since
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ENVELOPING ALGEBRAS AND COHOMOLOGY OF LEIBNIZ PAIRS 4501

proj.dimAeA = gl.dimA, see [4, Section 1.5]. On the other hand, ∧q = 0 and hence
HLq�L� N� = Extq

��L��k� N� = 0 for any q > dimk�L� and any Lie module N over L.
In this case, the spectral sequence (5.1) is congruent, and Extn

Ae���L���
1�A�� M� = 0

for large n. It follows from the long exact sequence in Theorem 5.3 that
Hn

LP�A� L� M� P� = 0 for sufficiently large n. �

Example 5.5. Let A = 	2�k� be the 2 × 2 full matrix algebra, L = 
l2�k� be the
symplectic algebra, and ��x��a� = �x� a� = xa − ax for x ∈ L� a ∈ A. Clearly, �A� L�
is a Leibniz pair. We have the following simple facts:

Extp
Ae��1�A�� A� = HHp+1�A� = 0 for p ≥ 1�

HomAe��1�A�� A� = Der�A� � 
l2�k� = L�

By the spectral sequence (5.1), we have

Extn
Ae���L���

1�A�� A� � Extn
��L��k� L� = HLn�L� = 0

for any n ≥ 0, where the last equality follows from [6, Chapter VII, Proposition 6.1
and 6.3]. It follows from Theorem 5.3 that Hn

LP�A� L� = 0 for any n ≥ 0.

FUNDING

Supported by National Natural Science Foundation of China (No. 11173126).

REFERENCES

[1] Auslander, M., Reiten, I. Smal�, S. O. (1995). Representation theory of artin
algebras. Cambridge Stud. Adv. Math. 36.

[2] Bao, Y. -H., Ye, Y. (2015). Cohomology structure for a poisson algebra: I. To appear
in J. Algebra Appl.

[3] Flato, M., Gerstenhaber, M., Voronov, A. A. (1995). Cohomology and deformation
of Leibniz pairs. Lett. Math. Phys. 34(1):77–90.

[4] Happel, D. (1989) Hochschild cohomology of finite-dimensional algebras. Springer,
LNM.1404, 108–126.

[5] Hilton, P. J., Stammbach, U. (1997) A Course in Homological Algebras (GTM4),
New York: Springer-Verlag.

[6] Humphreys, J. E. (1972) Introduction to Lie Algebras and Representation Theory
(GTM9), Springer-Verlag.

[7] Kubo, F. (1998) Finite-dimensional simple Leibniz pairs and simple Poisson modules.
Lett. Math. Phys. 43(1):21–29.

[8] Landi, G. (1997). An Introdcution to Noncommutative Spaces and Their Geometries,
Spinger-Verlag.

[9] Sweedler, M. E. (1969). Hopf Algebra. New York: Benjamin.
[10] Yang, Y.-H., Yao, Y., Ye, Y. (2013). (Quasi-)Poisson enveloping algebras, Acta Math.

Sin. 29(1):105–118.

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y]

 a
t 0

0:
49

 1
9 

D
ec

em
be

r 
20

15
 


